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Abstract
A necessary condition for the integrability of Hamiltonian systems with a
two-dimensional homogeneous potential, due to Morales-Ruiz and Ramis, is
extended for more general Hamiltonian systems of the form H = T (p)+V (q),
with homogeneous functions T (p) and V (q).

PACS numbers: 0230I, 0230

1. Introduction

A Hamiltonian system with n degrees of freedom is integrable if there exist n independent
first integrals in involution (Liouville integrability). For the case of two degrees of freedom in
particular, the existence of a first integral which is independent of the Hamiltonian guarantees
the integrability of the system. It is a fundamental and important problem to determine whether
a given Hamiltonian system is integrable or not. At present, however, there are no ultimate
algorithms (necessary and sufficient conditions for integrability) which provide the answer to
this problem.

The Painlevé property of the solution in singularity analysis [10] is believed to be strongly
related to the integrability of the system, which is known as the Painlevé conjecture. The
singularity analysis has its origin in the discovery of the Kowalevski top [6] (see [1] for a brief
history). Although any rigorous relation between the Painlevé property of the solution and the
integrability of the system has not been established, some new integrable systems, including
the Kowalevski top [6], were discovered [2, 9] using the postulate that the solution possesses
the Painlevé property. These are good examples that the Painlevé property works well as a
sufficient condition for integrability.

On the other hand, Morales-Ruiz and Ramis [7] gave a strong necessary condition for the
integrability of Hamiltonian systems with n degrees of freedom of the form

H = 1
2p2 + V (q) (1)
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2138 K Nakagawa and H Yoshida

where V (q) is a homogeneous function of integer degree. The necessary condition was
obtained by the combination of the following three facts.

Fact 1. The variational equation around a straight-line solution of the system is transformed
into the Gauss hypergeometric equation by a proper change of the independent
variable [12].

Fact 2. If the system is integrable, then the Gauss hypergeometric equation is solvable in
the sense of the differential Galois theory, i.e. the solution is obtained only by a
combination of algebraic functions, quadratures and exponential of quadratures [8].

Fact 3. A necessary and sufficient condition for the solvability of the Gauss hypergeometric
equations was given by Kimura [5] (Kimura’s theorem).

Recently, Yoshida [14] gave a direct and independent proof of the theorem of Morales-
Ruiz and Ramis [7] in the case of two degrees of freedom and justified the so-called weak
Painlevé property [9] as a necessary condition for integrability for the first time. This paper
shows that the proof of Yoshida [14] is easily extended for more general Hamiltonian systems
of the form

H = T (p) + V (q) = T (p1, p2) + V (q1, q2) (2)

where T (p) and V (q) are homogeneous functions of integer degrees m and k, respectively.
Here we assume that m �= 0 and k �= 0. Fact 1 remains true for the generalized system (2)
[13], which is summarized in section 2. Fact 2 is shown as theorem 1 in section 3, where
the proof of Yoshida [14] is generalized for the system (2). Then, section 4 gives a necessary
condition for the integrability with the help of Kimura’s theorem, followed by some examples
in section 5. In section 6, the necessary condition is rewritten in terms of the Kowalevski
exponents [1, 11] in the field of singularity analysis [10]. Before closing this section, we note
that all computations in this paper can be done over the field of complex numbers.

2. Derivation of the Gauss hypergeometric equation from the variational equation

Let us assume that the canonical equations of the system (2),

dq

dt
= ∇T (p)

dp

dt
= −∇V (q) (3)

have a straight-line solution of the form

q = cQ(t) p = cP(t). (4)

Here, c = (c1, c2) is a solution of the algebraic equations

c = ∇T (c) = ∇V (c) (5)

and Q(t), P (t) satisfy the differential equations

dQ

dt
= Pm−1 dP

dt
= −Qk−1. (6)

Let ξ and η denote variations from the straight-line solution (4) in the direction of q and p,
respectively. Then, the linear variational equations of the canonical equations (3) around the
straight-line solution (4) are given by

dξ

dt
= Pm−2∂2T (c)η

dη

dt
= −Qk−2∂2V (c)ξ (7)
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where

∂2T (c) :=
(

∂2T

∂pi∂pj

)
p=c

∂2V (c) :=
(

∂2V

∂qi∂qj

)
q=c

(8)

are Hessian matrices of the functions T (p), V (q), evaluated at the point p = q = c. Since
the Hessian matrices (8) are symmetric and are easily shown to be commutative, they are
simultaneously diagonalizable by the change of variables ξ = Uξ′,η = Uη′ with an
orthogonal matrix U . We note here that the Hessian matrices ∂2T (c) and ∂2V (c) have a
common eigenvector c, and the corresponding eigenvalues are m − 1 and k − 1, respectively.
Then, after the orthogonal transformation, the variational equations (7) become

dξ′

dt
= Pm−2

(
µ 0

0 m − 1

)
η′ dη′

dt
= −Qk−2

(
λ 0

0 k − 1

)
ξ′ (9)

where µ and λ are the other eigenvalues of the Hessian matrices ∂2T (c) and ∂2V (c),
respectively. The first components of equations (9), given by

dξ

dt
= µPm−2η

dη

dt
= −λQk−2ξ (10)

describe the variation normal to the straight-line solution (4) and are called the normal
variational equations (NVE). Here, for the sake of simplicity, we omit the primes and suffixes.
Let us fix the energy of the straight-line motion described by (6) as

h = 1

m
Pm +

1

k
Qk = constant = 1

k
. (11)

Then, by the change of the independent variable, t → z, defined by

z = {Q(t)}k (12)

the NVE (10) are transformed into

dξ

dz
= µ

k
z(1−k)/k

[m
k
(1 − z)

]−1/m
η

dη

dz
= −λ

k
z−1/k

[m
k
(1 − z)

](1−m)/m

ξ. (13)

By eliminating η from these two equations, we obtain the Gauss hypergeometric equation

z(1 − z)
d2ξ

dz2
+ [γ − (α + β + 1)z]

dξ

dz
− αβξ = 0 (14)

with the parameters

α + β = 1

m
− 1

k
αβ = −µλ

mk
γ = 1 − 1

k
. (15)

This Gauss hypergeometric equation has three parameters, m, k and � = µλ.

3. Integrability of the system and solvability of the Gauss hypergeometric equation

The integrability of the system (2) leads to the solvability of the Gauss hypergeometric
equation (14) with (15) in the following way.
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Theorem 1. If the system (2) is integrable with an additional first integral which is independent
of the Hamiltonian and analytic at least in the neighbourhood of the straight-line solution (4),
then a particular solution of the Gauss hypergeometric equation (14) with (15) is given by

ξ = exp

[∫
ζ(z) dz

]
(16)

where ζ(z) is a solution of the algebraic equation

f0(z)ζ
n + f1(z)ζ

n−1 + · · · + fn−1(z)ζ + fn(z) = 0 (17)

with polynomials fj (z).

Proof. Suppose that the system (2) is integrable and that there exists an additional first integral
"(q,p) = constant. Then, as seen in section 3 of Yoshida [14], we have a non-trivial first
integral of the NVE (10),

I = Dn" :=
∣∣∣∣
(

ξ · ∂

∂q
+ η · ∂

∂p

)n

"(q,p)

∣∣∣∣
q=cQ,p=cP

= constant (18)

with an integer n � 1 (see [4, 12] for the further details). We can rewrite this first integral in
the form

I = I (Q, P, ξ, η) = constant (19)

which has the following three properties.

Property 1. I is a homogeneous polynomial in the variables (ξ, η).
Property 2. I is a homogeneous polynomial in the weighted degree.
Property 3. I is even or odd in (Pm/2, ηm/2).

Property 1 is obvious from equation (18). See appendix A for the proof of properties 2 and 3.
From (11)–(13), we have the transformation

Q = z1/k P =
[m
k
(1 − z)

]1/m

ξ = ξ η = k

µ
z(k−1)/k

[m
k
(1 − z)

]1/m dξ

dz

(20)

which transforms (19) into the first integral of the Gauss hypergeometric equation (14) with
(15) of the form Ĩ (dξ/dz, ξ, z) = constant. Then, the first-order ordinary differential equation
Ĩ (dξ/dz, ξ, z) = 0 gives a particular solution of the Gauss hypergeometric equation (14) with
(15). By property 2 of the first integral I , the differential equation Ĩ = 0 can be written in the
form

f0(z)

(
dξ

dz

)n

+ f1(z)ξ

(
dξ

dz

)n−1

+ · · · + fn−1(z)ξ
n−1

(
dξ

dz

)
+ fn(z)ξ

n = 0. (21)

Furthermore, we can assume that fj (z) is a polynomial of z for all j (see appendix B for
details). Now if we introduce a new variable ζ by ζ := (dξ/dz)/ξ = d log ξ/dz, then the
differential equation (21) is reduced to the algebraic equation (17). From a solution ζ = ζ(z),
we find log ξ = ∫

ζ(z) dz. We therefore obtain a particular solution (16). This means that
a particular solution is obtained by a combination of algebraic functions, quadratures, and
exponential functions of the quadratures. Then we have completed the proof of theorem 1. �
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4. Necessary condition for integrability

The quantities λ̂ = 1 − γ, µ̂ = γ − α − β, ν̂ = β − α are called the differences of exponents
at the regular singular points (z = 0, 1,∞) of the Gauss hypergeometric equation (14) (see
section 5 of Yoshida [14] for details). Then the following theorem due to Kimura holds.

Theorem 2 (Kimura [5]). A necessary and sufficient condition for the Gauss hypergeometric
equation (14) to be solvable in the sense of the differential Galois theory is either:

• at least one of λ̂ ± µ̂ ± ν̂ is an odd integer, or
• ±λ̂,±µ̂,±ν̂ take values in table 1, called the table of Schwarz–Hukuhara–Ohasi, in an

arbitrary order with integers l, m, n.

Table 1. Table of Schwarz–Hukuhara–Ohasi.

Case λ̂ µ̂ ν̂

1 1
2 + l 1

2 + m arbitrary

2 1
2 + l 1

3 + m 1
3 + n

3 2
3 + l 1

3 + m 1
3 + n l + m + n = even

4 1
2 + l 1

3 + m 1
4 + n

5 2
3 + l 1

4 + m 1
4 + n l + m + n = even

6 1
2 + l 1

3 + m 1
5 + n

7 2
5 + l 1

3 + m 1
3 + n l + m + n = even

8 2
3 + l 1

5 + m 1
5 + n l + m + n = even

9 1
2 + l 2

5 + m 1
5 + n l + m + n = even

10 3
5 + l 1

3 + m 1
5 + n l + m + n = even

11 2
5 + l 2

5 + m 2
5 + n l + m + n = even

12 2
3 + l 1

3 + m 1
5 + n l + m + n = even

13 4
5 + l 1

5 + m 1
5 + n l + m + n = even

14 1
2 + l 2

5 + m 1
3 + n l + m + n = even

15 3
5 + l 2

5 + m 1
3 + n l + m + n = even

Theorem 1, together with theorem 2, brings a necessary condition for the integrability of
the system (2). The differences of exponents of the Gauss hypergeometric equation (14) with
(15) are

λ̂ = 1

k
µ̂ = 1 − 1

m
ν̂ =

√
(m − k)2 + 4mk�

mk
. (22)

From the first condition of theorem 2, we obtain

� = {(jm − 1)(jk − 1)} ∪ {(jm + 1)(jk − 1) + 1} (23)

for general values of (m, k). Here, j represents an arbitrary integer. Let us proceed to the
second condition of theorem 2. We first consider case 1 of table 1. When both m and k are
±2, arbitrary � is compatible with integrability. When either m or k is ±2, the values of �

such that ±ν̂ = 1
2 + integer, are compatible with integrability. From this, we have

� =
{
(mk + 2k − 2m)(mk − 2k + 2m)

16mk
+

j (j + 1)

4
mk

}
. (24)
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Moreover, taking account of the cases 2–10 and 12–14 of table 1, we obtain additional values
of �. Then we have the following theorem.

Theorem 3. If the system (2) is integrable, then � must be one of the following discrete values.
The values (23) are compatible with integrability for general (m, k). When either m or k is ±2,
the values (24), in addition to the values (23), are compatible with integrability. When both m

and k are ±2, arbitrary � is compatible with integrability. When m = ±2, k = ±3,±4,±5
or m = ±3,±4,±5, k = ±2, the following values of �, in addition to the values (23) and
(24), are compatible with integrability.

•(m, k) = (±2,±3), (±3,±2):

� = {− 1
24 + 1

24 (2 + 6j)2
} ∪

{
− 1

24 + 1
24

(
3
2 + 6j

)2
}

∪
{
− 1

24 + 1
24

(
6
5 + 6j

)2
}

∪
{
− 1

24 + 1
24

(
12
5 + 6j

)2
}

(25)

•(m, k) = (∓2,±3), (±3,∓2):

� = {
25
24 − 1

24 (2 + 6j)2
} ∪

{
25
24 − 1

24

(
3
2 + 6j

)2
}

∪
{

25
24 − 1

24

(
6
5 + 6j

)2
}

∪
{

25
24 − 1

24

(
12
5 + 6j

)2
}

(26)

•(m, k) = (±2,±4), (±4,±2):

� =
{
− 4

32 + 1
32

(
8
3 + 8j

)2
}

(27)

•(m, k) = (∓2,±4), (±4,∓2):

� =
{

36
32 − 1

32

(
8
3 + 8j

)2
}

(28)

•(m, k) = (±2,±5), (±5,±2):

� =
{
− 9

40 + 1
40

(
10
3 + 10j

)2
}

∪ {− 9
40 + 1

40 (4 + 10j)2
}

(29)

•(m, k) = (∓2,±5), (±5,∓2):

� =
{

49
40 − 1

40

(
10
3 + 10j

)2
}

∪ { 49
40 − 1

40 (4 + 10j)2
}
. (30)

Moreover, when m, k = ±3,±4,±5, the following values of �, in addition to the values (23),
are compatible with integrability.

•(m, k) = (±3,±3):

� =
{

1
36

(
9
2 + 9j

)2
}

∪ { 1
36 (15 + 18j)2

} ∪ { 1
36 (3 + 18j)2

}
∪
{

1
36

(
63
5 + 18j

)2
}

∪
{

1
36

(
9
5 + 18j

)2
}

(31)

•(m, k) = (±3,∓3):

� =
{

1 − 1
36

(
9
2 + 9j

)2
}

∪ {1 − 1
36 (15 + 18j)2

} ∪ {1 − 1
36 (3 + 18j)2

}
∪
{

1 − 1
36

(
63
5 + 18j

)2
}

∪
{

1 − 1
36

(
9
5 + 18j

)2
}

(32)

•(m, k) = (±3,±4), (±4,±3):

� = {− 1
48 + 1

48 (6 + 12j)2
} ∪ {− 1

48 + 1
48 (3 + 24j)2

}
(33)
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•(m, k) = (∓3,±4), (±4,∓3):

� = {
49
48 − 1

48 (6 + 12j)2
} ∪ { 49

48 − 1
48 (3 + 24j)2

}
(34)

•(m, k) = (±3,±5), (±5,±3):

� =
{
− 4

60 + 1
60

(
15
2 + 15j

)2
}

∪ {− 4
60 + 1

60 (3 + 30j)2
} ∪ {− 4

60 + 1
60 (24 + 30j)2

}
∪ {− 4

60 + 1
60 (25 + 30j)2

} ∪ {− 4
60 + 1

60 (5 + 30j)2
}

(35)

•(m, k) = (∓3,±5), (±5,∓3):

� =
{

64
60 − 1

60

(
15
2 + 15j

)2
}

∪ { 64
60 − 1

60 (3 + 30j)2
} ∪ { 64

60 − 1
60 (24 + 30j)2

}
∪ { 64

60 − 1
60 (25 + 30j)2

} ∪ { 64
60 − 1

60 (5 + 30j)2
}

(36)

•(m, k) = (±4,±4):

� =
{

1
64

(
80
3 + 32j

)2
}

(37)

•(m, k) = (±4,∓4):

� =
{

1 − 1
64

(
80
3 + 32j

)2
}

(38)

•(m, k) = (±5,±5):

� =
{

1
100

(
125
3 + 50j

)2
}

∪ { 1
100 (45 + 50j)2

} ∪ { 1
100 (5 + 50j)2

}
(39)

•(m, k) = (±5,∓5):

� =
{

1 − 1
100

(
125
3 + 50j

)2
}

∪ {1 − 1
100 (45 + 50j)2

} ∪ {1 − 1
100 (5 + 50j)2

}
. (40)

When m = 2, the statement of theorem 3 corresponds to that of the theorem due to Morales-
Ruiz and Ramis [7].

5. Examples

Let us take the Hamiltonian system

H = (p1 + p2)
m + (p1 − p2)

m

2m
+

(q1 + q2)
k + (q1 − q2)

k

2k
(41)

as an example to confirm the statement of theorem 1. The system (41) is integrable with an
additional first integral

" = (p1 + p2)
m − (p1 − p2)

m

2m
+

(q1 + q2)
k − (q1 − q2)

k

2k
= constant. (42)

The parameter � equals (m−1)(k−1) for the straight-line solution (4) with (c1, c2) = (1, 0).
The first integral (19) of the NVE is I = ξQk−1 + ηP k−1 = constant, which yields the first
integral of the Gauss hypergeometric equation, Ĩ = z(k−1)/k[(m − 1)ξ + m(1 − z) dξ/dz] =
constant. From Ĩ = 0, we obtain ξ = exp[

∫
(m − 1) dz/m(z − 1)] = (z − 1)(m−1)/m. This

indeed satisfies the Gauss hypergeometric equation (14) with � = (m − 1)(k − 1). We can
see that the parameter � = (m − 1)(k − 1) is an example of (23) with j = 1.

Next, we take the Hamiltonian system of the form

H = 1

m
(p2

1 + p2
2)

m/2 + Vk(q1, q2) (43)
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where m is a positive even integer and Vk(q1, q2) is a homogeneous polynomial of degree k.
When m = 2, this system is reduced to the system (1). We first consider the case where

Vk(q1, q2) = 1

k
(q2

1 + q2
2 )

k/2. (44)

The system (43) with (44) is integrable with an additional first integral " = q1p2 − q2p1. The
parameter � equals 1 for the straight-line solution (4) with (c1, c2) = (0, 1). The first integral
(19) of the NVE is I = D" = ξP − ηQ = constant, which yields the first integral of the
Gauss hypergeometric equation, Ĩ = (m/k)1/m(1 − z)1/m(ξ − kz dξ/dz) = constant. From
Ĩ = 0, we obtain ξ = exp[

∫
(1/kz) dz] = z1/k . This indeed satisfies the Gauss hypergeometric

equation (14) with � = 1. We can see that the parameter � = 1 is an example of (23) with
j = 0. Next we take the case where

Vk(q1, q2) = 1

kr

[( r + q2

2

)k+1
+ (−1)k

(
r − q2

2

)k+1
]

r =
√
q2

1 + q2
2 (45)

as an example to see how theorem 3 works. The parameter � equals (k − 1)/2k for the
straight-line solution (4) with (c1, c2) = (0, 1). By comparing (k − 1)/2k with the discrete
values � listed in theorem 3, we find that the cases where (m, k) = (2, arbitrary), (arbitrary, 1)
are only compatible with integrability. When m = 2, the parameter � corresponds to (24)
with j = 0 for arbitrary k, and the system (43) is integrable with an additional first integral
" = p1(q1p2 − q2p1) + (k − 1)q2

1Vk−1/2k [9]. When k = 1, the parameter � becomes 0,
which is an example of (23) with j = 0. Then we have V1(q1, q2) = q2 and find it integrable
with an additional first integral " = p1. Finally, we take the case where

Vk(q1, q2) = 1

k
(qk

1 + qk
2 ). (46)

When m = 2, the system (43) with (46) is obviously integrable with an additional first integral
" = 1

2p
2
1 + (1/k)qk

1 . Let us consider the case where m �= 2. When k � 2, the parameter
� equals 0 for the straight-line solution (4) with (c1, c2) = (0, 1), which is compatible with
integrability. For k = 1, there exist no straight-line solutions and theorem 3 is not applicable.
However, the case where k = 1 is integrable with an additional first integral " = p1 − p2.
For k = 6k′ + 2 with a non-negative integer k′, there exists another straight-line solution (4)
with (c1, c2) satisfying (c2

1 + c2
2)

m/2−1 = ck−2
1 = ck−2

2 = 1. This straight-line solution yields
the parameter � = k − 1 = 6k′ + 1, which is compatible with integrability when and only
when k′ = 0, i.e. k = 2. This means that the cases where k = 6k′ + 2 with a positive integer
k′ are non-integrable. When k = 2, the system (43) with (46) is integrable with the additional
first integral " = q1p2 − q2p1. It remains to be seen whether the other cases are integrable or
non-integrable.

All of the above examples are separable cases. As for non-separable cases, the authors
do not know of any examples except the case for m = 2, where some non-separable examples
are known [14].

6. Necessary condition in terms of Kowalevski exponents

Let a system of differential equations

dxi

dt
= Fi(x1, x2, . . . , xn) (i = 1, 2, . . . , N) (47)

be invariant by the scale transformation (a scale-invariant system)

t → α−1t xi → αgi xi . (i = 1, 2, . . . , N). (48)
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Eigenvalues of an N × N matrix K whose elements are given by

Kij =
(
∂Fi

∂xj

)
x=d

+ δij gi (49)

are called the Kowalevski exponents (KE) [11]. Here, d = (d1, d2, . . . , dN) is a solution of
the algebraic equation

Fi(d1, d2, . . . , dN) = −gidi (i = 1, 2, . . . , N). (50)

A concise review of the KE is given in [1]. Since the system (2) is invariant by the scale
transformation

t → α−1t q → αgq p → αg′
p g = m

mk − m − k
g′ = g + 1

m − 1
(51)

we can consider the KE for the system (2). The characteristic equation, which determines the
KE, is

det(ρI4 − K) = det
[
(ρ − g)(ρ − g′)I4 + ∂2T (d′)∂2V (d)

] = 0 (52)

where d and d′ satisfy

∇T (d′) = −gd ∇V (d) = g′d. (53)

Let νi and τi denote the eigenvalues of Hessian matrices ∂2T (d′) and ∂2V (d), respectively.
Then, we see that the KE are solutions of

(ρ − g)(ρ − g′) + νiτi = 0. (54)

From (5) and (53), we have the relations among c,d and d′, given by

d = {−g(g′)m−1}g/mc d′ = {g′(−g)k−1}g′/kc. (55)

This means

∂2T (d′) = {g′(−g)k−1}(m−2)g/m∂2T (c)

∂2V (d) = {−g(g′)m−1}(k−2)g′/k∂2V (c).
(56)

Therefore, we have

νi = {g′(−g)k−1}(m−2)g/mµi τi = {−g(g′)m−1}(k−2)g′/kλi . (57)

Here, µi and λi are eigenvalues of the Hessian matrices ∂2T (c) and ∂2V (c), respectively
(µ1 = µ, λ1 = λ,µ2 = m − 1, λ2 = k − 1). Then, equation (54) becomes

(ρ − g)(ρ − g′) − gg′µiλi = 0 (i = 1, 2) (58)

which yields two pairs of KE. For i = 2, we have a pair of KE

(ρ3, ρ4) =
(

mk

mk − m − k
,−1

)
. (59)

For i = 1, equation (58) becomes

ρ2 − (g + g′)ρ + gg′(1 − �) = 0 (60)

from which we obtain the other pair of KE for the values of � listed in theorem 3. For
� = (jm + 1)(jk − 1) + 1, the pair of KE is

(ρ1, ρ2) =
(

k + jmk

mk − m − k
,

m − jmk

mk − m − k

)
. (61)
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For � = (jm − 1)(jk − 1), the pair of KE is

(ρ1, ρ2) =
(

jmk

mk − m − k
,
m + k − jmk

mk − m − k

)
. (62)

For the values of � given by (24), the pair of KE is

(ρ1, ρ2) =
(

2(m + k) + (2j + 1)mk

4(mk − m − k)
,

2(m + k) − (2j + 1)mk

4(mk − m − k)

)
. (63)

For � = −(m − k)2/4mk + X2/4mk listed in (25)–(40), the pair of KE is

(ρ1, ρ2) =
(

m + k + X

2(mk − m − k)
,

m + k − X

2(mk − m − k)

)
. (64)

We can see that all the KE listed above are rational numbers. Then we obtain the following
corollary of theorem 3.

Corollary 1. If the system (2) is integrable, then all the KE are specific rational numbers listed
above.
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Appendix A

We give the proof of properties 2 and 3 of the first integral I mentioned in section 3.

Proof. A function "(x1, x2, . . . , xN) is said to be homogeneous in the weighted degree with
a weight M if the scale transformation (48) multiplies " by αM , i.e.

"(αg1x1, α
g2x2, . . . , α

gN xN) = αM"(x1, x2, . . . , xN). (A1)

As seen in appendix A of Yoshida [14], we can assume that a first integral of scale-invariant
systems is a homogeneous polynomial in the weighted degree. The NVE (10) are invariant by
the scale transformation

t → α−1t Q → αgQ P → αg′
P ξ → αg′

ξ η → α2g′−gη (A2)

with constants g and g′ given in section 5. Therefore, we can assume that the first integral I
is a homogeneous polynomial in the weighted degree.

Property 3 can be recognized from a general theory of the time reflection symmetry
discussed in section 2.3 of [3]. If we introduce new variables, P̄ := Pm/2, η̄ := ηm/2, then the
NVE (10) become

dξ

dt
= µP̄ 2(m−2)/mη̄2/m 2

m
η̄2/m−1 dη̄

dt
= −λQk−2ξ (A3)

which are invariant by the change of variables (‘time reflection’)

t → (−1)2(m−1)/mt Q → Q P̄ → −P̄ ξ → ξ η̄ → −η̄. (A4)

Suppose that I (Q, P̄ , ξ, η̄) is a first integral of the system (A3). Then I (Q,−P̄ , ξ,−η̄) is
also a first integral because of the ‘time reflection’ symmetry of the system (A3). Thus, I +

and I− given by

I + = I (Q, P̄ , ξ, η̄) + I (Q,−P̄ , ξ,−η̄)

2
I− = I (Q, P̄ , ξ, η̄) − I (Q,−P̄ , ξ,−η̄)

2
(A5)
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are also first integrals. Every first integral I can be decomposed as I = I + + I−, where I + is
even in the variables (P̄ , η̄) and I− is odd. Therefore, the first integral I can be assumed to be
even or odd in (Pm/2, ηm/2) from the beginning. �

Appendix B

We prove that all fj (z) in (21) can be assumed to be polynomials.

Proof. Let M = CQaP bξcηd and M ′ = C ′Qa′
P b′

ξc′
ηd ′

be any two monomials in the
polynomial (19), where C,C ′ are constants and a, b, c, d, a′, b′, c′, d ′ are integers. By
substituting (20) in M,M ′, we have

M = C

(
k

µ

)d (m
k

)(b+d)/m
za/k+(k−1)d/k(1 − z)(b+d)/mξc

(
dξ

dz

)d

(B1)

M ′ = C ′
(

k

µ

)d ′ (m
k

)(b′+d ′)/m
za

′/k+(k−1)d ′/k(1 − z)(b
′+d ′)/mξc′

(
dξ

dz

)d ′

. (B2)

In order to complete the proof, it is enough to show that the differences of the powers of
z, (1 − z) in M,M ′, given by

61 = 1

k
a +

k − 1

k
d −

(
1

k
a′ +

k − 1

k
d ′
)

62 = 1

m
b +

1

m
d −

(
1

m
b′ +

1

m
d ′
)

(B3)

are both integers. By property 1 of the first integral I , we can put

c − c′ = −n d − d ′ = n (B4)

with an integer n. By property 2 of the first integral I , the relation

ga + g′(b + c) + (2g′ − g)d = ga′ + g′(b′ + c′) + (2g′ − g)d ′ (B5)

holds with constants g and g′. From (B5) together with (B4), we have

a − a′ = − k

m
(b − b′) − k − m

m
n. (B6)

Then 61,62 are reduced to

61 = 1

m
{b′ − b + (m − 1)n} 62 = 1

m
(b − b′ + n). (B7)

By property 3 of the first integral I , we can always put either

2b

m
+

2d

m
= 2s

2b′

m
+

2d ′

m
= 2s ′

or

2b

m
+

2d

m
= 2s + 1

2b′

m
+

2d ′

m
= 2s ′ + 1

(B8)

with integers s, s ′. In both cases, we have b−b′ = −n+m(s−s ′) and then 61,62 are reduced
to

61 = s ′ − s + n 62 = s − s ′ (B9)

which are both integers. Then we have completed the proof. �
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